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Abstract

The concept of ¢pg-stability and ¢o-boundedness recently were introduced for systems
of ordinary differential equations (ODEs). Perturbing Liapunov function method was
discussed for systems of ODEs and extend to systems of functional differential equations
(FDEs). In this paper, we extend these notions to impulsive systems of differential equa-
tions via cone perturbing Liapunov function method.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

The problem of qualitative mathematical theory of impulsive systems of
differential equations has been interest by a great numbers of mathematicians
Bainov and Simeonov [2,3], Kulev and Bainov [4], Lakshmikantham
et al. [7], Somoilenko and Perslyuk [8]. Furthermore these systems are ade-
quate mathematical models for numerous processes and phenomena studied
in biology, physics technology, etc.
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The main purpose of this paper is to extend the notion of ¢y-stability and
¢o-boundedness to impulsive systems of differential equations via cone per-
turbing Liapunov function. This method is also extend of both perturbing Lia-
punov function of [5], and cone-valued Liapunov function method of [6], for a
cone in cone-valued Liapunov function method is unit element or Liapunov
function is unperturbed function, this method becomes Liapunov direct
method, and for the motivation of this work is the recent work of [1,4,5].

Let R' be an s-dimensional Euclidean space with a suitable norm || - ||. Let
R = [0,00). Define

S'(p) ={xe W x| <p, p>0}.

Consider the system of differential equations with impulses

X =f(tx)+h(ty), 1#uxy), Ax|_. ., =A4x)+B(y), (1)
V =F(t,x,y), t# u(x,y), Ay't:r,-(x,y) = Ci(x,y), .
where x € R, y € R”, £ R x S"(p) = R", h: R* x §"(p) = R", F: R" x

$(p) % S"(p) = ", 4,: §"(p) — W', B,: S"(p) — K", C, : S"(p) x $"(p) —
R", 7, 8"(p) x S"(p) — R

A'x|r:r(xﬁy) = x(t + O) - x(t - 0)7 Ay|t:‘c(x,y) = y(t + 0) - y(t - 0)

Let x(z, to, X0, ¥0), Y(2, to, Xg, o) be solution of the system (1.1), satisfying the
same initial values X([() + 0, to, Xo, y()) = X0, y(l() + 0,[(), X0, y()) =Yo for ty) € ‘J{+,
Xxo € S"(p), yo € S”(p). The solution (x(¢), y(¢)) of the system (1.1) are piecewise
continuous functions with points of discontinuity of the first type in which they
are left continuous, i.c. at the moment #; when the integral curve of the solution
(x(7), y(t)) meets the hypersurface

o, ={(t,x,y) € R x §"(p) x S"(p) : t = 1;(x,»)}.
The following relations are satisfied:
x(ti = 0) =x(t),  Axl_, = A:(x() + B.(y(1:)),

y(ti = 0) =y(t), Ay, = Cix(t),y(t)),
together with system (2.1), we consider the following system with impulses:
X =f(tx), t#u(x0), Ax|_. .o =4x). (1.2)
Let
si=1{(t,x) € R" x §"(p) : t = 7;(x,0)}.

For any subset £; C R”", we denote by Ey, EY, and E; the closure, the comple-
ment, and the boundary of E; respectively. Furthermore for any subset
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E, C ", we denote by E,, Ej, and OE, the closure, the complement, and the
boundary of E, respectively, where S =S, U S, and E= E| U E,.
The following definitions are depending on that given in [1,6].

Definition 1. A proper subset K; of R” or a proper subset K, of R" is called a
cone if

() K, C Ky, 1 >0,
(i) K;+ K, C K,,

(i) K; =K;,

(iv) K¢ # 0,

(v) Kin(=K; = {0},

where K, and K denote the closure and interior of K; respectively, and 9K; de-
notes the boundary of Kj, i = 1, 2, it follows that K = K; UK, C R"UR" be a
cone in R" U R".

As in [1,5] we introduce the following definitions.

Definition 2. The set K* is called the adjoint cone if
K ={¢peRUR": (p,x+y) 20 forxeK, CK,yeK, CK}
satisfies the properties (i)—(v) of Definition 1, where (¢, x + y) < ||o||(||x|| +
IlvID). For m>n, x = (x, x3, ..., x,) and y = (y1, 2, - - .» V). Thus
x+y=05,%,%5,,0,0,....0) + (Vs Yoy V)
= @YX Y0 Xn Y Va0 V),

x € 0K; iff (¢, x) = 0, for some ¢ € K, K;y =Ky \ {0}, i=1,2.

Definition 3. A function g: D — R", D C R" is called quasimonotone relative
to the cone K;, i=1,2, if x, y € D and y — x € 0K, then there exists ¢, € K},

such that (¢o, ¥ — x) = 0 and (¢, g(y) — g(x)) = 0.

Definition 4. A function A(r) is said to be belong the class #" if a € C[R", R,
b(0) =0, and b(r) is strictly monotone increasing in r. Let to(x, y) =0 for

(x,y) € S"(p) % S"(p).
Following [4] we define the sets

G ={(t,x,) € R x §"(p) x §"(p) : ni-1 (x,y) <t < w(x,y)},

Q ={(t,x) € R" xS"(p) : 11 (x,0) < t < 1,(x,0)}.
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As in [4], we use the classes 7", and %", of piecewise continuous functions
which are analogue to Liapunov functions.

Definition 5 [4]. We say that the function V :R" x §"(p) x S"(p) — K
belongs to the class 77 if the following conditions hold:

(1) The function V is continuous in (J°,G; and is locally Lipschitzian with
respect to x and y in each of the sets G;, and V(¢, 0,0) =0 for € R*.

(2) Mty — 0, xo, yo) = V(ty, X0, o), for each i=1,2,... and for any point
(to, X0, Vo) € o, the following limits:

V(t() - 07x0aJ’0) = lim V(t,x,y),
(tx.y)=(t0X0.30)
(tx,y)€G;
V(t0+07x07y0) = lim V(t)xay)
(txp)—(to.x0.v0)
(tx)€Gi1
are exist.

(3) For any point (¢, x, y) € g,, the following inequality holds:
V(t+0,x+4,(x) + B(y),y + Ci(x, ) < V(t,x,). (1.3)

Definition 6 [4]. We say that the function W:Ix S"(p) — K belongs to the
class #"y if the following conditions hold:

(1) The function W is continuous in | J;°Q; and is locally Lipschitz with respect
to x in each of the sets Q; Wi(ty) — 0, xo) = W(to, x0), WI(t,0)=0, for
t € WY, and the following limits:
W(fo — 07.X()) = lim W(t,x),

(tx)—(20,%0)
(tJC)EQ[

W(fo + O,X()) = lim W(t,x)
(tx)—(20,%0)
(tx)€Q;

are exist.
(2) For any point (¢, x) € s;, the following inequality holds:
W(t+0,x+ A4,(x)) < W(t,x). (1.4)
Let V € 77, and x(7), y(¢) be a solution of (1.1), for (¢,x,y) € |J;°G; follow-
ing [4] we define

DYV (t,x,y) = lsilr&[V(tst,ers(f(t,x) +h(t,y)),y+sF(t,x,y)) = V(t,x,p)],
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and V' (t,x,y) = D"V (t,x,y), t # t{x, y), where D" V(t, x, y) is the upper right
Dini derivative of the function V{(z, x, y).

Analogously one can define the function W, , (¢, x) for an arbitrary function
W e W, for (t,x) € J; Q. The following definition is new and related with
that of [1,4].

Definition 7. The zero solution of system (2.1) is said to be ¢y-equistable if for
all €>0, for all 7, € R", there exist &= 0(ty, €) >0, for all (xo, yo) €
(S"(p) x S™(p)) such that for ¢, € K,

(o, X0 +yy) < 6 implies (py,x" (2,20, X0,¥y) + ¥ (2, 20, %0, 3y)) < €, t = to,

where x* and y* is the maximal solution of (1.1).

Definition 8. The zero solution of (1.1) is ¢o-bounded if for o> 0, t, € R*,
there exists f(z, «) > 0 such that for ¢, € K,

(¢O7x* +y*) < o,
provided that (¢g, xo + yo) < p(2, @).

Definition 9. We say conditions (A) hold if the following conditions are
satisfied:

(A) The functions f{z, x), h(t, y), and F(t, x, y) are continuous in their defini-
tions domains and f{z, x) is quasimonotone in x relative to the cones Kj,
and F(t, x, y) is quasimonotone in x and y relative to the cones K; and K>,
f(t,0)=h(t,0)=0, F(z,0,0)=0 for t € R*, and there exists a constant
L > 0 such that

F(t,x,y) <L, (t,x,y) € R xS"(p) x S"(p).
(A,) There exists a continuous function P: 7 — I such that
P(0) =0 and [|a(t,»)|| < P(Iyll) for (z,x) € R* x §"(p).
(A3) The functions A;, B,, C, are continuous in their definitions domains and
A,0) = B,0) = C,0,0) =0, and for x € S"(p) and y € S"(p), then
x +4,(x) + B, )l < [Ix[| and |y + ey <lyll, i=1,2.
(A4) The functions 7,(x, y) are continuous and for (x, y) € S"(p) X S"(p) the

following relations hold: 0 < t(x, y) < 1o(x, y) < -+ < lim,_ o tdx, y) =
oo uniformly in S"(p) x $”(p), and

inf 7 (,y)— sup Tln,y) = 0>0, i=1,2,...
S"(p)xS™(p) §"(p)xS™(p)
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(As) For each point (#y,x,1,) € R x §"(p) x " (p), the solution x(z, to, xo),
(2, to, X0, o) of the system (2.1) is unique and defined in (¢, c0).

(Ag) For each point (t,xo) € R x §"(p) the solution x(, o, xo) of system
(2.2) satisfying x(t + 0, 9, xo) = Xg is unique and exists for all ¢ € (zy, c0).

(A;) The integral curve of each solution of system (1.1) meets each of the
hypersurfaces {o,} at most once.

2. ¢o-boundedness

The following result discussed concept of ¢g-boundedness of the system
(1.1) via cone perturbing Liapunov function

Theorem 1. Let the conditions (A) be satisfied, and Ei,E; C R" be compact
subsets. Suppose that there exist two functions Vi(t,x,y) € C[R" x
(E{ NE5),K], Va(t,x,y) € C[R" x §"(p) x S™(p), K], and there exist two func-
tions g, € C[R" x R, K] g, € C[RT x R, K] with Vi(t,0,0)= Va(t,0,0) =
g1(t, 0) = g5(t, 0) = 0 such that

(Hy) Vi(t, x, y) is bounded and Lipschitzian in x and y relative to the cones K,
and K, respectively, and
D+V1(t7xay) <g1(t, Vl(t7xay))7 (tvxvy) eer XETQEZ (21)

(Hy) Va(t, x, y) is Lipschitzian with respect to x and y relative to the cones K,
and K, respectively, and

b(¢0>x* +y*) < (¢0a VZ(t’xvy)) < d(¢0,x* +y*)a (22)

where a,b € A", (t,x,y) € R" x §"(p) x $"(p).
(H3) For each (t,x,y) € R" x §"(p) x S"(p),

D¥ (o, V1(t,x,)) + D* (o, Va(t,x,9)) < g8, Vi(t,x,9) + V2t x,9)).
(2.3)
(Hy) If the zero solution of the system differential equation
=g (tu), u(t,u) = u (2.4)
is ¢po-bounded, and if the zero solution of the system differential equation
wo=g(tw), wlty) = w (2.5)

is uniformly ¢o-bounded.

Then the zero solution of (1.1) is ¢py-bounded.
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Proof. Since E;, E, are compact subsets of R", there exists p >0 such that
So(p), Sy (p) C (E1 NEy, py) for some po > 0, where

S(E\NEy, py) ={xeR" :d(x,E\NEy) < py}

and

A, By N E) = inf[lx = .
Let t € R*, « < p be given, and oy = oy(¢o, ®) = max(a, o), where

% = max [Vl(to,xo,yo) X0, vp € S"(@) N S™(a) N E*

and o > Vi(t, x, p), for (t,x,y) € R" x O(E, N E,), where E° = E{ UES, and
E = E; U E,. Since the zero solution of (2.4) is ¢y-bounded, given o; > 0 and
to € M*, there exists fo = Po(t, #1) > 0 such that for ¢, € K}

(¢07r1(t7 th MO)) < o1, (26)

whenever (¢, ug) < fo, where r(t, to, ug) is the maximal solution of (2.4).
Also, since the zero solution of (2.5) is uniformly ¢o-bounded, given o, > 0,
to € R*, there exists B1(2z) > 0 such that for ¢, € K,

((]50,7'2([710,140)) < o (27)
provided that (¢, wo) < f1(an), where ry(z, to, wg) is the maximal solution of
(2.5).

Now, we choose uy = V(tg, X0, yo), and o = a(a) + fo. As b(u) — oo with
u — 0o, we can choose f = f(¢y, «) such that

b(B) > Pi(o2). (2.8)

Now, to prove that the zero solution of (1.1) is ¢o-bounded, it must be shown
that (¢o, xo + yo) € S"(xr) N S™ () implies for the maximal solution x*(¢, £, Xo),

V' (1, to, xo) satisfies (o, X" (1, to, Xo) + y*(1, to, X0)) < B(to, ).
Suppose that this is not true, then there exists "> ¢, o >0, with
(o, x0 + yo) € S"(2) N S™(«x) such that for ¢, € K,

}Lrg(¢07X*(t*a tvao)ﬂy*(t7 lo,X())) = ﬁ

Since S(E, p) C S(x), there are two possibilities to consider:

(I) X(t, lo, xO)a y(ta to, X()) S E for ¢ € [[05 t*]'
(IT) There exists t, > ty such that

x(t,t9,x0) € OF, x(t,t9,x0) € E¢ for t € [ty,1"].
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If case (I) is true, then we can find #; > ¢, such that

(o, X" (11, 20, %0) + ¥ (t1,t0,%0)) € (S (ex) N S2(ex)),
(o, x* (%, 10, %0) + ¥* (1", t0,%0)) € B(S1(B) N S2(B)), (2.9)
(o, X" (2, 10, X0) + ¥ (2, 10, X)) € D(S1(2t) N Sa(ar)), t € [to, £'].
Setting
m(t) = Vi(t,x(t,t0,x0), ¥(¢, t0,%0)) + Valt,x(¢, t0,x0), (¢, t0,%0)), t€E [t1,1].

It is easy to obtain, from (2.3), and thus from [6],
D'm(t) < g(t,m(1), t€[n,r].

Consequently, by comparison Theorem 1.4.1 of [6], we get
(b, m(1)) < (o, ra2(t,0m(2))), ¢ €[00, 1], o € K,

where ry(t, 11, wp) is the maximal solution of (2.5) such that ry(t, t1, wp) = wo.
Thus

V(85 x(2, to, x0), y(t*, to, x0)) + Val(t", x(£*, 2o, x0), (£, to,X0))
< (0, Vit x(t, b, x0), (8, to, %0)) + Valty, x(t1, 20, %0), ¥(t1, to, X0)) )
(2.10)
Similarly, from (2.1) we have
Vit x(t1, to, x0), ¥(t1, 0, X0)) < 71(t1, to, Vi(to, X0, ¥p)),
and thus for ¢, € K3,
(b, Vi(tr, x(11, 80, x0), ¥(11, 20, X0))) < (o, r1(t1, 20, Vi (0, %0, %)), (2.11)

where (¢, to, Up) is the maximal solution of (2.4).
From the fact that uy = V(tg, X0, yo) < &1, and (2.6) yield

(‘l’oﬂ’l ([1,10, Vl(thXO;J’o))) o for (d)()?u()) < ﬁO‘ (212)
Furthermore for ¢, € Kj,
(s Valt1,x(t1,t0,X0), ¥(t1, 20, %0))) < a(a), (2.13)

where a(o) = ||pol|[|az()]|, as(e) > 0, from (2.12) and (2.13), we have

(¢07W0) = (¢07 Vl(tlax(tlvtoaxo)vy(tlv tvaO)))
+ (¢, Valt1,x(tr1, 80, %0), (11, t0, %0))) < a(a) < a. (2.14)

Hence, from (2.2), (2.7)—(2.10), (2.14), and the fact that V'; > 0,

b(B) < Pi(e2) < b(P)- (2.15)
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If the case (IT) holds, we again arrive at the inequality (2.10), where ¢, > ¢
satisfies (2.9). Now, we have in place of (2.11) the inequality
Vi(ti,x(t1, 20, %0), (11, 20, %0)) < ri(ty, ta, Vi(t2, x(t2, £, X0), ¥(2, b, X0)))-
Since  x(#2, to, Xo0), ¥(f2, o, Xo) €OE and  Vi(ta, x(t2, to, Xo), (12, to, X0)) <
o < oy. Thus, we get the same contradiction in (2.15). This proves that

(o, x* (2, t0,%0) + y™(t1, 20, X0) ) 22,

whenever (¢, Xo + yo) < f1(to, ), and the proof is completed. [

3. ¢o-Equistability

In this section, we discuss the notion of ¢g-equistability property of the sys-
tem of (1.1) via cone perturbing Liapunov function method. Define the follow-
ing set:

Z={(xp): (x,y) € (S"(p) N SL(n)) x (8" (p) NS (M)}

Theorem 2. Let the conditions (A) be satisfied and assume that there exist two
functions V1(t,x,y) € C[R" x §"(p) x S™(p), K], Va(t,x,y) € C[R" x Z,K], for
any n>0,V,(t,0,0) — Va(t,0,0)= 0, where S/(n) is the complement of S (),
J = n, m. Further assume that there exist two functions g, € C[R* x R" K];g, €
C[RT x R K] with gi(t, 0) = gx(¢, 0) = 0 such that

(Hs) Vi(t, x, y) is bounded and Lipschitzian in x and y relative to the cones K,
and K, respectively, and

D+(¢Oa Vl(t7x7y)) <8 (tv Vl(t7xay))7 (t’xvy) € R x Sn(p) X Sm(p)'

(He) Va,(t,x,y) is locally Lipschitzian in x and y relative to the cones K;, and
K, respectively, such that

a(¢07x+y) < (d)Ov VZJI(t?xay))
< b(gg,x +), (t,x,9) € R" x S"(p) x S"(p), a,b € A .

(Hy) For (t,x,) € R x 8"(p) x $"(p),
D'V i(t,x,y) + D V(t,x,y) < g&(t, Vi(t,x,) + Va(t,x,)).

If the zero solution of the differential equations

u' =g (t,u), ult,to,uo) =uo >0 (3.1)
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is ¢o-equistable, and if the zero solution of
v'=g5(t,0), v(tto,00) =09 =0 (3.2)

is uniformly ¢g-stable, then the zero solution of the system (2.1) is ¢o-
equistable.

Proof. From our assumption, the zero solution of (2.5) is uniformly ¢(-stable,
let 0 < e < p, given b(e) > 0 and ty € R, there exists 5y = do(¢) > 0 such that for
$o € Ky

(d)o,rl(ta t07W0)) < b(g)v t = to, (33)

provided that (¢g, wo) < 8, where r(t, ty, wo) is the maximal solution of (2.5).
From the condition (Hg), there exists d, = d»(¢) > 0 such that

0

a(do) < 5 (3.4)
From our assumption, the zero solution of (2.4) is ¢y-equistable, given g, and
to € M*, there exists 5* = 5*(zg,¢) > 0 such that for ¢, € K;

o
((]50,V1(l‘7f0,u0)) < = t = to, (35)

2 )
provided that (¢g,ug) < 0*, ri(t, to, ug) being the maximal solution of (2.4).

Following [7], choose ug = Vi(t9, X0, o), since Vi(t,x,y) is continuous and
71(2,0,0) = 0, there exists ¢; > 0 such that for ¢, € Kj

(¢07x0) <o= (¢07 V(t07x0ay0)) < 6*7 t = t, (36)

holds simultaneously, we set 6 = min(d,, 0»).
Now, to prove that the zero solution of (1.1) is ¢o-equistable, i.e.,

(o, X0 +1y) <0 = (Pg, X" +y) <€, = 1t.

Suppose that this is not true, there exist ¢, t, > ¢, such that for (¢q, xo +
Yo) <9,

(o, x" (11, 0, X0) + " (11, %0, %0)) € 0(S1(02) N S2(02)),
(g, x*(t2, 20, %0) + y*(f2, 10, X0)) € 0(S1(€) N S2(€)), (3.7)
(o, x"(, 10, X0) + (¢, 10,%0)) € S(€) N S°(d0), 1€ [t,0].
Let 0, = 5. So that the condition (Hg) is assured. Setting
m(t) = Vi(t,x(t,t0,x0), ¥(t, to,x0)) + Vo (t,x(2, t0,%0), (¢, t0,%0)), ¢ € [t1,t0],
we get for ¢, € K,
D" (¢g,m(t)) < g(t,m(1)), ¢ € [0, 1],
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which yields
(o, Vi(t2,x(t2, 20, %0), ¥(t2, t0,%0)) + Vay(t2,x(t2, t0,%0), ¥(t2, 20, %0)))
< (P, ra(tr, 00, Vi (81, x(21, 20, %0), ¥(t1, 20, X0))
+ Vay(t1,x(t1, 0, %0), (21, 20, %0)))),

where ry(t1, ¢y, wo) is the maximal solution of (2.5), and ry(¢1, ¢y, wg) = wo. Also,
we have for ¢, € K,

(o, Vi(t1,x(t1,t0,%0), (11,20, %0))) < (o, 71(t15 20, Vi(t0,%0,¥0)))s

where (¢, to, tp) is the maximal solutions of (2.4).
By (3.5) and (3.6), we have

0
(s Vi(t1,x(t1, 0, %0), ¥(t1, 20, %0))) < ok (3.8)
From (3.4) and (3.7), we get
0
(¢Oa VZ-;](tlax(tlatva())ay(tla t07x0))) g E (39)

Thus (3.3), (3.7)-(3.9), (Hg) yield the following contradiction:

b(€) = b(g,x" (11, t0,x0) + y* (11,10, X0))
< (s Vo (t1, X" (81, 10, X0) ), ¥(t1, Lo, X0))
< algy,x"(t2,t0,%0) + ¥ (11,20, %0))
= a(0) < b(e).

Thus, the zero solution of (1.1) is ¢g-equistable, and the proof is
completed. [
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